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Abstract 
| 

The basic equations for the flow of electrons and holes 
In a semiconductor are presented and discussed. A small sig- 
nal transient solution for an injected pulse of holes Is ob- 
tained which Is applicable to semiconductors which are Intrinsic 
or nearly so, as well as to ordinary n and p types. Three 
conditions for the validity of the small signal solution are 
derived and discussed.  In particular, a criterion for the va- 
lidity of the assumption of space-charge neutrality is dis- 
cussed in detail. A second approximation to take into account 
the beginning of nonlinear effects for large injected pulses 
Is also derived and discussed.  Finally, the theory of conduc- 

; tivity pulses due to Injected carriers In a filament is dis- 
cussed in the light of the preceding theory, and it is shown 
that the apparent quantum efficiency for photoconductivity in 
an intrinsic semiconductor can become very much larger than 
b + 1, where b is the mobility ratio. 

I. 

The Basic Equations 

Using the mass-action law for recombination the diffusion 

of carriers in a homogeneous semiconductor may be described by 
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(.2 ) the following system of equations:  ' 

H . .r(np . Bi«, + |_ (^ + ^ »in     (ii) 
8X 

If. -rlnp-n/) -& (A pE) • D »if      (1.2) 
r     ^ ax 

dE   4tre / v /. » v 

dx" T" (p ~ n + ne) (1*3) 

where ; 

n = local density of electrons 

p = local density of holes 

u,   u    » mobility of electrons and holes, respectively 

D , D » diffusion coefficient for electrons and holes, 

respectively 

E » local electric field intensity 

K - macroscopic dielectric constant 

Equation (1.1) is the conservation equation for electrons, 

Eq. (1.2) that for holes, and Eq. (1.3) is Poisson's equation. 

In this report we consider only the one-dimensional problem, 

so that quantities n, p, and E, constituting the dependent var- 

iables, depend only on the single space coordinate x. 

In this report we shall consider solutions of the Eqs. (1.1), 

(1.8), and (1.3) which are applicable to an infinite homogen- 

j       eous medium, or to cases in which boundary conditions can be 

neglected.  In particular, we shall be concerned with solutions 

corresponding to the injection of a pulse of minority carriers 

at the plane x • 0 and time t = 0 —the so-called indieial 

solutions.  Since the system cannot be solved rigorously for 

arbitrary injected densities, we shall be concerned principally 

with small-3ignal solutions and the conditions of their va- 

lidity. 
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II. 

Simplification of the Basic Equatlona 

Subtracting (1.2) from (1.1) we have the following rela- 

tion: 

2       2 

8?   P 8x< 8 t (n - p) - & [(v + V)E] • Dn a-| - Dp A-|  (8.1) 

fl E 
Substituting for ~-. from (1.3) Eq. (2.1) can be put; in 

a x 
the form: 

•/* n + /* p 
^ ,„ . p, . E J. (V • v, + *•<"R  V) (p - „ • n.) 

+ En A - DP H {Z'Z) 
8x     r 8x 

In Eq. (2.2) the coefficient of (p - n + n ) is the e 
reciprocal of the natural relaxation time: 

_1 4nr 
rp * "TT" (2.3) 

where <f   is the conductivity. Except for very steep pulses, 

this quantity 1» :iuch that the corresponding term in (2.2) is 

extremely large compared with the remaining terns unless: 

p - n + n - 0 , (2.4) 

i.e., electrical neutrality obtains throughout the region. 

The significance of Eq. (2.4) may be seen in another 

rather simple manner. First integrate Eq. (1.3) from - co to 

+ oo , obtaining: 

ira dm 
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E - E - ^  j     (p - n + n ) dx ,       (2.5) 

-oo 

where E+ and E_ are the values of the electric field at + oo 

and - oo , and the right aide of (2.5) now depends only on 

time. Next integrate (2.1) from - oo to + oo taking into 

account (2.5) and the fact that the semiconductor assumes its 

equilibrium properties at sufficiently large distances from 

the injection point at x = 0. Then we obtain: 

Aft   4TT0- 
+7 

If "-IT2"0    ;    G"   / (P - n + ne) dx   (2.6) 

where    <rQ - e(^nQ + ^pp0) 

Q~> P~ * electron and hole densities at + oo o  o — 

Equation (2.6) has the solution: 
_t_ 

~To G » GQ e 
p (2.7) 

Thus an initial deviation from electrical neutrality disappears 

rapidly with the time constant given by Eq. (2.3). A more 

precise criterion will be derived below. 

If we now assume the condition of neutrality, Eq. (2.4), 

Eq. (2.1) reduces to: 

_8_ 
dx {<V> + V)E+ (Dn-V It} ' ° '    {2-8) 

which may be integrated immediately, giving: 

Unn + /zpp)E + (Dn - Dp) || - 1/e ,        (2.9) 

where I, an integration constant which may depend on time, 

has the physical interpretation of the total current density. 
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Next,  we divide Eq.   (1.1)  by  un,  Eq.   (1.2)  by  up and 

add,  assuming space-charge neutrality. 

.   kT/1   .   l\92p 
+ "Vn       p;^T2   (2.10) 

where we have made use of the Einstein relation to obtain the 
last term.  Solving (2.9) for E and substituting into Eq. (2.10) 

we can obtain an equation which Involves only p as the 
dependent variable. This Is: 

aJ> • r(np.0 «, . . I '°-'KV a .  (n-pl"nV (D .„ , fa)' 

cV>+V' ~ 17 (2-11) 

Equation (2.11) may be rewritten in somewhat simpler form 

by noting that: 

'Si^p  8    I  I(n-p)    + 
An+^p 8x   I el^n+./tpP)    T 

(n-P^(VDn)  3^ } 
(/^nn+/zpp)    ax f 

I(n-p)/z u (n-p)(D -D )# /£  /  \2 

e(/^n^pP)
2 9X       (/fen+^p)8   \9x / 

(n-p)(/jp-/^)   /^   ^ ^ 

The first two terms on the right of Eq. (2.12) are the same as 
the first two terms on the right of (2.11). Thus, comparison 

of (2.11) and (2.12) leads to the following result: 
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8t 
• -r p(p+ne) - n^ .18 

b+I dx i + s*ii. 
n e 

2b 
b+1 D TT 9x 

(2.13) 

where we have used the neutrality condition to express n in 

terms of p. In this equation; 

b - a /fi    » ratio of mobility of electrons to holes, n p 

It is interesting to note that if the sample is intrinsic, 

corresponding to n =0, the second term on the rirht of (2.13) 

vanishes, and the equation becomes linear except for the 

recombination term.  In this case the effective diffusion 

coefficient is given by: 

2b 2 m 
DP  Dn 

P  _L + _L 
(2.14) 

If we set I • 0 in Eq. (2.13) and neglect recombination, 

the result is identical with that previously derived by Herring 

and quoted in Shoekley's book (Eqs. 6 and 7,R329). 

It is evidently possible to include the last term in 

Eq. (2.13) in the brackets. When this is done, the equation 

takes the simple form: 

If' -r[P(p+ne) -n^l  +£ 
f l/e(b+l) + (l+|£)Dp|f 

^ne 

(2.15) 

Equation (2.15) is rigorous except for the assumption of 

the neutrality condition and the mass action recombination law. 

It is not possible to solve in this most general form because 

of its nonlinearlty. 
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III. 

Approximate Solutions of the Basic Equations 

In order to solve (2.15), we assume 

P " P0 
+ Pi ' 

where p Is the equilibrium hole density, and expand the quan- 

tity in'brackets of (2.15) as a Taylor Series in p..  In this 

way we obtain: 

a_     l/e(b+l) 
8X 

i/ebn 1 + 
e 

1 + *£.^ 
^ne b ne 

^pl + 

2P, 

"e 8Pn 

b+1 po  P ax 

e 
1+^ir 

(1/eb) b+1 

1 + 
b+1 po 

T3" 
b n 

e j 

( 

b-1 
M  +       "2F       1 D  *

P1 
-J      7—TTZr* ^ Dp ^ 

b ne 

(3.1) 

The last two terms in brackets are of second order compared 

with the first three. For example, the ratio of the fourth to 
(3) the second term is:  ; 

b+1 
"B" 

P 

ne + 

1 
E+T 
b po W Vo 

(3.2) 

This ratio Is Jus*: the local percentage enhancement of con- 

ductivity due to the extra carriers.  Provided the ratio ia 

everywhere small, we are justified in dropping the fourth term. 
(3) 

Similarly the ratio of the fifth to third term may be written: ' 
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inn    *p' yl 
a n + 'n o /zppo 

b-i V po 
b+r n • p~ <<:L (3.3) 

Equation (3.3) is always a weaker condition than (3.2) since 

the second factor is smaller than unity. 

ft's can thus obtain an approximate solution of (2.15) by 

dropping the last two terms in the brackets of (3.1)  The 

recombination term must also be linearized by neglecting terms 
2 of order p. . Thus: 

p(p + ne) - n^ 

provided 

Pi  + pl(no + po} ~ pl(no + Po1' 

(2.4) 

r^l . 

The condition (3.4) is of about the same stringency as (3.2). 

Using the three approximations (3.2), (3.3), and (3.4) Eq. (2.15) 

may be written in the simple linear form: 

a2p. 8Pj 
at 

pi aPi 
t o3x ax 

(3.5) 

where ^' r<Vpo> 

M'   = 

A   . b+1 po 
"VM1 + — n7 

1   + b+1 P° 1  + -c— r— 

1  + 

T~ n~ 
2p o 
n 

1  + b+1 
^ D p 

e(Vo+ VoJ 

n^  - P, 

f*r n 

n~ + P« o o 
n^ P~ o ,  ^_o 
D D P n 

> 

(3.6) 
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When n >> p   >   M
1—»^_ and D»—HD  .  while  If  p^ >>n  ,   /*»—»»-ft 

KJ \j y p Q o ij 

and D1—*-Dn» 
a3 would be expected from physical arguments. 

It is Interesting to observe that If we substitute the 

actval local densities n and p In the definitions of /i' and D1, 

so that n%   and D' become spatially varying functions, then the 
rigorous equation (2.15) can be written in terms of fix   and D' 
as follows: 

!£.-r(np-niS,+JL |L_f_ + D,||J (3.7) 

Returning to Eq. (3.5), we find for this the "indicial" 

solution: (x _     }2 
t     *~   o 

Q     V       4D't 
P, m ;      e P  e (3.8) 
1  /4nD't 

where Q is the number of excess carriers introduced per unit 

cross section area at t • 0, x » 0. The solution (3.8) is 

formally Identical with that usually given for the Haynes 
(4) 

experiment  , except that the mobility and diffusion 

coefficients are replaced by their effective values. The so- 

lution (3.8) always violates the conditions (3.2), (3.3), and 

(3.4) for sufficiently small t.  However, in practice we can 

never inject an infinitely short pulse of carriers.  If we 

inject a Gaussian pulse of the form: 
2 x 

I(x,t) - 6(t)   Q    e  4Dlto (3.9) 
/4nD«t( 

so that the total number of injected carriers is still Q, the 

solution is precisely of the form (3.8;, with 
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4D»(t+tJ (3.10) 
x  /4nD'(t+t ) 

t ^ 0 

Here t defines the spatial extension of the original injection. 

Under such conditions (3.10) is valid at all tines provided 

P - . g m  /4TTD't0 

everywhere satisfies condition (3.2). 

IV. 

The Second Approximation 

Returning to Eq. (3.1), it is possible to take Into 

account the correction terms by substituting the solution (3.8) 

for the terms which are quadratic In p, and treating these terms 

as a known source function for the linear differential equation 

(3.5).  In this treatment the integrals can only be evaluated 

as elementary functions if we neglect the recombination term 

in (3.5), which we shall accordingly do. The rather involved 

algebra is exhibited In Appendix A. We can express the final 

result in the following way. The complete solution for p is 

given by: 

P - P0 
+ Px 

+ P2 f4'1) 

where p, is the solution (3.8) and pg is given by: 
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P2. -      Q 1    .   „.        f    b+l'V^^ 
no+ po "p        1       b           ^          2- 

f /  s 
Pi /4TTD« t \yf*W~i 

.   b-1 
r                         s2^ "* 

> 

. 

_/4D't      2            V4Dtt/     * 
(4.2) 

S - x - /*'Eot 

x 
Erf(x) -i |  e"*  dt 

Vn 

The first term in the brackets is odd In S and thus gives 
rise to a correction which makes the pulse unsymmetrical, the 
asymmetry being such as to shift the maximum to negative values 
of S. On the time axis, for a fixed x, (which Is what is ob- 
served on an oscilloscope in the Haynes experiment), the max- 
imum of the pulse is shifted towards longer times as the inten- 
sity of the pulse is increased. The second term in brackets 
is even in S and so leads to no shift in the maximum but only 
a symmetrical change of shape. 

For small (S//4D!t), i.e., near the center of the pulse, 
the bracketed expression in (4.2) may be written: 

(I b+l eEoS  M /,   3 £   \ 
[  j " " b ""kT   2b \   4 4D'ty       (4.3) 

For large argument th* corresponding expression la: 

S U-* . bn !V^ + 
b kT /4D't 

(4.4) 

the upper and lower signs applying,  respectively,   for positive 
and negative  S. 

tan 
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According to (4.3), we can calculate that the maximum of 

the distorted pulse occurs for 

2D't 
/4nD»t n + p a o *o ^p 

it ££i eEo 
kT (4.5) 

or for fixed x 

x 
•pr. i + 

/i^t no+ p- D 
DJ_ b+1 

O
D

P 

(4.6) 

The quantity- Is the maximum excess hold (or electron) 
/4nD't 

density at the center of the pulse. Thus the criterion for a 

small correction term becomes: 

m D«   b+1   (V VP 
m 

o  o  p a n + ujp na o *p*o 
«1 (4.7) 

This condition is identical with (3.2). 

Equation (4.4) in conjunction with (4.2) shows that near 

the wings of the pulse, I.e., for S//4D't >1, the field- 

dependent term of (4.4) results in multiplying the amplitude 

of p. by a factor 

1 + Q   JH  b+1 *Eo^ 
n~+p~~ a    ~b"  2kT 
o  op 

(4.0) 

for negative 3 and dividing by the aameuunaomit factor for 

positive S, thus making the pulse steeper on its receding 
(5) edge and less steep on its advancing edge.  Herring  ' has 

given a simple physical interpretation of this effect in terms 

ma 
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of the fact that the effective svesp field is lower In regions 

of higher carrier density. 

The second term In brackets of (4.2) is even in S and in 

general leads to a blunting of the pulse. For small S the 

second term is negative while for large S it becomes positive. 

Physically this effect comes about because near the center of 

the pulse the semiconductor is more nearly intrinsic and there- 

fore according to (3.6) the effective diffusion coefficient 

is larger near the center of the pulse than near the edges. 

Hence the pulse spreads somewhat more rapidly than would be 

indicated from the equilibrium diffusion constant. Alternatively, 

in a case where holes are the majority carrier, /*• changes sign 

and the pulse Is sharper than it would normally be, because the 

extra holes required for space-charge neutralization inhibit 

diffusion.  Reference to Eq. (4.4) would suggest that effects 

due to diffusion dominate the mobility effect If S is suffi- 

ciently large. The condition for this, however, is that: 

S > 4 b+1 V po 
b no~ po 

(4.9) 

i.e., at distances beyond the distance through which the pulse 

has been swept by the field. Thus, in fact, the effect repre- 

sented by (4.8) dominates the situation under most conditions. 

The factor (4.8) can be written approximately in. the form: 

1 + 
p  (« + V eE ox no" 

kT O   0 

1 

(4.10) 

The correction term is to be compared with (4.7), and is seen 

to provide a somewhat more stringent condition, since the 

factor in brackets is usually appreciably greater than unity. 

In fact, the validity of the customary Interpretation of the 
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Haynes experiment depends upon the condition that the factor In 

square brackets la much greater then 1, as Is demonstrated In 

Appendix B.  In a nonlntrlnsic experiment this factor Is just 

the ratio of the 7oltage difference between emitter end collector 

point in the sweeping field to kT. 

V. 

Arur 

The Neutrality Approximation 

In Eq. 12.2) we saw that the term having the coefficient 

was dominant. We may obtain a measure of the degree of 

violation of the neutrality condition by assuming p - n + n • 0 

in the other terms of (2.2),  which have nuch smaller coefficients. 

We thus obtain: 

(5.1) 

Substituting for E in (5.1) from (2.9) we have: 

n-p-n e TT<T e(^nn+ up)   \3x ] ^n
n+>"pP \dX) 

.    JLJL   f   - 
4rre   ax     / eTITn+zTpT 

* iVV4 ax 

D - D    „       1 

V^V 8X  J (5.2) 

Comparing   (5.2)  with  (2.13)  we  obtain,  neglecting recombination: 
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n-p-ne  = 4tre^n< 

K 
4nen 

1   • ± 
e A 

2D D       2 1 

D + D    ~~2       3t P      n ax i (5.3) 

In  terms  of the basic   solution   (3.8)  expressed  In  terms 
of  S,   Eq.   (5.3)  may be written: 

r-p-ne _       K       (i. + i\       f2DnDP     1   82pl  +     .E   8^pl       9fnPl 
Pi ^^  W       V        LV^Pl^i2"       *    O—8§-~       8t 

i     v ^  i   f!V + b-ir1   s21} 
*  V  Po   "     Vp     '  ^      l    W ^T L1  " 2D^tJJ 

[   2b     kT 2b    \x       2D'tj   j 

K_ 
ne 

b_n!V 
n + p,, 4n<rt  J 2b  kT o  o      ' 

bn + p  v o *o K (5.4) 

We see from Eq. (5.4) that the principal criterion of 

neutrality is simply that 

t>>- T„ K 
4TI(T 4.T. 

(5.5) 

or in practical units 

t» 0.885 Kp x 10"14 sec 

Since we are dealing with pulses whose length is measured in 

microseconds, we do not have to worry about neutrality until 
g 

we have resistivities of the order of 10 ohm cm, of no prac- 

tical importance In semiconductors.  If one type of carrier, 

e£., holes, can be trapped, its effective mobility can become 

extremely low, effectively increasing b in Eq. (5.4). Then b 

is replaced by b/f, where f is the fraction of time a hole 
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spends trapped, and the condition (5.5) becomes weakened by 

a factor l/f on the right. Thua for f -  10~ , space-charge 

questions again become important, and it actually follows from 

(5.4) that the neutrality condition is violated if either 

carrier has its mobility sufficiently reduced by trapping. 

For Ge and Si at room temperature (5.5) is satisfied by a 

tremendous margin. 

VI. 

Photoconductivity Pulses *®' 

Consider a filament with constant voltage applied along 
it.    The  voltage  drop may be obtained from Eq.   (2.9), as: 

/D-D        C 
% - e    n.     P    /    !-fn<rdx (6.1) <r /<n+ ft    J    ax 

The integration over x Is taken between electrodes.  If we 

assume that electrodes mo into in equilibrium charge densities 

in their vicinity, i.e., are ohmic in character, then it fol- 

lows that the second term on the right of (6.1) vanishes. For 

small disturbances we have: 

11   A o-   1   ^n* '"p „ • - ,. 

o   ^o    o    o 

where (f   • equilibrium conductivity and p, is the solution 

(3.8) of the generalized diffusion equation (3.5). Using 

(6.2) in (6.1) and transposing, we obtain: 



TR181 -17- 

r°" -'•'—*  /V ^t' - T vo + TT <V V £   J»i*. <6-3> 

where L «= length of the filament.  The first term Is the equi- 

librium conduction current while the second term Is increment 

of current arising from the injected carriers. More rigorously, 

p. 3hould be not Eq. (3.8) but rather a modified solution which 

satisfies the boundary conditions p » 0 at the ends of the 

filament.  However, we may study the behavior qualitatively in 

terms of (3.8)  The second term in (6.3) may be approximated by: 

/ 

Ll pxdx - Q *     0 < t < £r£- 

t > 

Thus we have a current pulse which lasts until the excess 

carriers are swept to the electrode, a well-known result which 

applies if the lifetime Tp   Is sufficiently long. The total 

charge pulse is thus of order: 

7 V . L 
AI(t) dt* -s2. (u+  a  )   . i . Q     x 

L   'n n?'  L      M*E~ o 

(i +  ft        L. 
-V^ . -f . Q . (6.5) 

wh^i^e Q is the originally injected hole charge and L. la the 

distance between the Injection point and the collecting elec- 

trode. According to (6.5) there is a charge amplification 

given by: 

„      b+1  bV po  Ll ,A Al a- nr •  n = P^ • IT  • (6-6> o  o 

In the nearly intrinsic case, with nx   very small and the 
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diffusion length long compared with the dimensions of the 

filament, we obtain: 

,  !^o  H  ^2 b+1 bno+ P0 
" kT  * L L "B  n + p   * o  *o 

For uniform illumination of the filament this becomes: 

(6.7) 

a • 
o b+1  o *o (6#8) 

6kT b  n + p o  o 

The condition for the validity of this expression is that: 

eVo L2 „  V *>o ,fiQ. 
FT^VT;  '        (6-9) 

whence an upper limit to a is: 

LT bn + p . ., 

•"•t-tt-^- <6-10) 

which shows that (6.7) make3 a smooth transition into (6.6) as 

the sweeping voltage is increased. 

Another case of interest is that in which the diffusion 

length is less than the distance to electrodes. Then Eq« (C .7) 

of the appendix leads to: 

a- r "nL 
P   • (6-1D 

Provided recombination and trapping can be neglected, Eq. (6.8) 

is applicable even when the filament is nearly an insulator. 
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It then becomes: 

since the insulator becomes In effect an intrinsic semiconductor 

] in the illuminated region. Equation (6.12) shows that it is 

possible to have apparent quantum efficiencies substantially 

greater than 1 in an intrinsic semiconductor or in a semi- 

conductor which is made locally Intrinsic by high radiation 

intensity. Eq. (6.12)  is only valid for an insulator, however, 
if electrons are free to flow into the conduction band of 

the insulator from the electrodes. 
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Appendlx A 

From Eq. (2.5) with T   - oo and Eq. (3.1), the inhomo- 

geneous linear differential equation to be solved nay be writ- 

ten: 

9Pg 
at /*»E 

3PS 

o ax" +    D' 
8 2p, 

ax (A.l) 

+ i ax 
(I./eb) 5+i 

1 + *±1 ^> 
b    n 

T"3 

b-1 
apn 

e_ 

n e 
1  + b    n 

^ ne   P   ax 

wn here p, is given by (3.8).  Changing variables to, 

S «= x - /z'E t o 

t» = D't 

and making use  cf  the  definitions  of  fi%   and D1   in   (3-5),  Eq.   (A J) 

reduces  to: 

3P2       l '9Z   .    1   _5_ 
at' " T72"     Dr as 

1    b-l jd^w       li£l     i       eg  
L  °    $     ne     b "> no+ Po     3S     2b 

J (A.S) 

Treating   the  last term as a   source,   this  equation has   the 

solution: 
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+oo t' 

• hi &r Z(<r-T) 1 
(S-<r)2 

e~   l(tt.tj 
/4ti(t' -r) 

-00 -00 

(A.3) 

^        ' A„  3<T "o D'    n        b n + 
8P 1       b-1 

-o     po      *"    ~^~ 

By a simple  change of variable and one  integration by parts, 

Eq.   (A.3)  can be  put  in the form: 

+co t' 

dtf 

-co 

dtf    f(S- <r.t'-T) ~^~ £- 
/4FT  2x e "4T 

(A.4) 

with    f(S- 0-,t'-T)  - £l eE 3p. 
2l 

_2.   £11 « 2   b-1 ^_ 
kT      b    pl "TF     9<r o       o 

where we have  used  the relation: 

* 
e   no" PQ 

ET n + prt o       o 
(A.5) 

In Eq. (A.4) p.  ia understood to be expre-sed as a function 
of the variable S -<T and t'-tf as indicated—hence the change 

in sign of the derivative term. 

To simplify (A.4) still further we integrate the second 

term by parts with respect to or . The result is: 

+00 

"P 
no+ po J 

-OD 

V 
dt 

JZnT 
0 

Iff  b 2T  TF\5T " ^2"j 

(A,6) 

4T 
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Written out explicitly this integral becomes: 

, uL 
u        n + p ^p   o *o 

. Q* 

+00 

-00 

t» 

d<r /  dr _1 1  eBc b+i . b-l/, £\ 
-iff-—** -WV' h) 

(A.7) 

} 4re" 2^tT-xJ • 

j 
2 

'.Ve carry out the integration over <r first, noting that: 

C    (S-ff*)    1 t' + T /    2T   \      S 
f? + 2(t'-rj = Vt t^T"^" t**+T SJ + 2(t«+rJ   (A'8) 

Equation (A.8) suggests changing the integration variable to: 

* = i^/S^-r^fVs) 
(A.9) 

S  . _1 /t^ 

Substituting   (A.9)   in   (A.7)  we may drop  immediately the  terms 
which are odd in   $,  and we are  left with: 

_ HL      SL 
M    n  +  p^ n?    o      o 

+00 t' 

d$    {      dte 

-QD 
1 

S" 
STtT+T) 

(A.10) 

eE b+1       S 
kT  IT t' + r 

+ *>-i n  _     s2 x2 t»-r\ y2   , 

^C~r~^ 
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The  integration over  *%   gives  Immediately: 

f 

_ XL _SL 
% no+ po 

dr    " 2(tf+trj 
4n 6 

eEoS b+1   .  b-1 
ITT + ~SF t-X)J/ ft'+r      dt 

(t» + t) 
(A.11) 

To integrate (A.11) we next change the variable of integration 

to 

u " 2(t'+XJ  ' 

obtaining: 

.. uL    <f     . X 

I 
2T 

nQ+ p0 ' 2n du e -uS* 

4t' 

eEoS  b+1 b-1 n „ 2uS2, 
-ET" ' b • 2b (1  2uS ' /4ut-l 

(A.12) 

Still another change of variable is necessary to 

v - 4ut - 1 

with this substitution (A.12) transforms once again to: 
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The integration over %   gives inmediately: 

xL __£ 
t» 
r 

n°' p° l 
dr    - 2(t'+*> 
4n 

•E  S . ., O       D+l %T \l ' FTr) J/ ftl+jc       dt (A.11) 

To  integrate   (A.11}  we next change  the variable of  integration 
to 

u " £(t»+T)     ' 

obtaining: 

1 
2TT 

P* " " % V po  * 2n     j       du e"US 

•[ 
4t' 

eE_S 
(A.12) 

Still  another  change  of varisble  is necessary to 

v  «  4ut - 1 

with this substitution (A.12) transforms once again to: 

•HKM 
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I 

-3 

S2     1 

- /*'      <f      2_ 4t' r 

"P V po   4ntr 
4t' 

i IO-I   o+l 
kT 

+ b-1  (1 S£ S2 __\ 

2v 

dv 
T72" (A.13) 

2 Sc 

Finally changing to x • ^p- V , we have: 

S£ 

4F 
p , - ML    V     S II i  7 
2    "p  no+ po v^t~ /7 

^0 

z/t* 
dx e -x 

e£ 

kT 
o b+1   S b-1 , b-l 1 ,.  , 2, (A.14) 

The result (4.2) follows immediately by integration of (A.14). 
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Appendlx B 

Consider the solution (3.8). In normal operation of the 

Kaynes experiment the maximum of the pulse la determined from 
the condition: 

9?! 
ST (B.l) 

This leads to: 

_1_ 
" 2t 

(x-^'E t)2   /x'E (x->*'E t) 

T 
P 4D r? 4D't (B.2) 

Let this be solved by 

/*'E, + t. 
(B.3) 

where t, is treated as first-order small. Then we have: 

~2x 
l^'Eof     1    (^Eo)2 

or 

l + 

t - 
M'K 

1   - 

2x  1 
7177 O   p 

^v :    f 
"TD^ " 1    J 

(B.4) 

The mobility is usually estimated from (B.3) with tn 
The correction term in (B*4) 13 negligible only if 

2x 
7^7 is not »T 
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and 
/i»E0x eV no"  po 

2D* M    no+ po 
»1 (B.5) 

The left-hand side of the inequality is the same as the mult- 

iplying factor in (4.10).  It is interesting to observe that 

if we combine the (4.6) and (B.5) corrections we obtain: 

X T   +      n       p    m kT    no+ po 
*      0 

a n +  u p Vo     MpHo •V no~  po (B.6) 
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Appendlx C 

We assume that Injection occurs at x - 0 and label the 

region x>0 with subscript 1 and to the left with subscript 2. 

oo 
The quantity C      p,dt satisfies the steady-state diffusion 

equation and so has th9 general solution: 

-p.x     p?x 
x> 0 A.,e x    + B,e 

-p.x     p x 
x < 0 B2e  

A + Age * 

(c.i) 

01  +  *   +   Q 
"SI)1"/    D«T    "51)*" 

Boundary conditions at the electrodes and at x • 0 give the 

following relations; 

Ax + Bx - A2 • B2 (C.2) 

"plLl P2L1 Ale Bl° "  ° (C??' 

p.L9 ' -p0I '1"2 ol'o 
B2e + A2e ** "  ° (C,4i 

D,A1P1  -  D'B1P2  - D»B2PX  + n>'A2P2 -  Q (C.5) 

•Ml 
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Prom these relations we obtain: 

B.   -  - A.e 

B2 "  " V 

-(V P2>L1 

"<V  P2,L2 

-(p,+ P0)U 
1     -    « l "        L 

l2 " " " ^-(Pl+ P2;L2   
A
I 

(C.6) 

*    ,   Q        _1       1 - e      x      f    j 
1      D?   " V P2   * I ~<pl+ P2)(VL2) 

X   ^   o 

+L, 

Apdx -  =^- Q 1 
D-    *   PlP2 

-L, 

(L.-^OU"^) V*VAL'*I%-.",A) 
1 - * 

ITp^+  P2ilL1+ L2) 

Qt JC^L^-I)(.P^2-I) - (i.;p^) (i..-p'L8) 
I P1L1  P2LE       ,-plLl.-p2L8 ^ e        e - e e 

>  (C.7) 

If Lj, » L,   or  p9L„ » 1 Eq.   (C.7)  reduces  to: 

If  /*'E^ » o 

'2"2 

V (1 - e"PlLl) 

W*    » we have: 

(C.8) 

Pl " VEQr (C.9) 
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For i—«1» we obtain the result (6.6) directly. 
*,Eor 

Another result of Interest occurs when both PiLn pnd ^z^Z 
may be regarded as small. This occurs In the nearly Intrinsic 

case. Then the bracket In (C.7) reduc9S to 

I V* LiLe " 5F7 • (c:•10, 

Substitution In (6.3) results In Bq. (6.7). 
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Footnotes 

1. Results very similar to these have been derived indepond- 
er tly by W. Van Roosbroek, to be published in Bell Syat. 
Tech. J.  I am indebted to Dr. Van Roosbroek for several 
Valuable discussions and for a pre-publication copy of his 
nanuscript. These results were reported by the present 
author at the Cambridge meeting or the American Physical 
Society, January, 1953. 

2. Various forma of these equations are discussed in W. Van 
Roosbroek, Bell Syst. Tech. J. 29 (4), 560 (1950), also by: 
W. Shockley, Electrons and HoTea in Semiconductors, Van 
Nostrand (1950), pp. 318-320. 

3. This criterion is also £iven in reference (1/* 

4. J. R. Haynes and W. Shockley, Phya. Rev. 75, 691 (1949). 

5. C. Herring, Bell Syat. Tech. J. 28, 401 (1949) or Monograph No. 
1726, p. 67. 

6. Cf. also W. Van Roosbroek, J_^ A pp. Phys. 23, 1411 (1952) 
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